Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139542

RESUMO

Although many surgical and nonsurgical therapeutic options have been well-established, hepatocellular carcinoma (HCC) remains the third most common cause of cancer-related death worldwide. Therefore, the discovery of novel potential therapeutic strategies is still urgently required for improving survival and prognosis of HCC patients. As the most potent antigen-presenting cells in the human immune system, dendritic cells (DCs) play an important role in activating not only innate but also adaptive immune responses to specifically destroy tumor cells. As a result, DC-based vaccines, which are prepared by different tumor-antigen-pulsing strategies or maturation-stimulating reagents, either alone or in combination with various anticancer therapies and/or immune effector cells, have been developed as a promising personalized cancer immunotherapy. This review provides a comprehensive summary of the evidence from clinical trials evaluating the safety, feasibility, and efficacy of DC-based vaccines in treating HCC patients and highlights the data from recent preclinical studies regarding the development of promising strategies for optimizing the efficacy of DC-vaccine-based immunotherapy for HCC.

3.
J Gastroenterol Hepatol ; 36(7): 1988-1996, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33462840

RESUMO

BACKGROUND AND AIM: Hepatocellular carcinoma (HCC) remains a serious cause of cancer-related deaths worldwide. Developing new therapeutic strategies is urgently needed to improve the outcomes of HCC patients. Dendritic cell (DC)-based vaccines and programmed death 1 (PD-1) immune checkpoint inhibitors have been regarded as potential immunotherapeutics for HCC. However, the therapeutic efficacy of combining these two treatments for HCC remains to be evaluated. METHODS: In this study, DCs were derived from mouse bone marrow and pulsed with mouse HCC cell lysates to generate a DC vaccine. A monoclonal antibody that blocks the interaction of mouse PD-1 with its ligands was used as a PD-1 inhibitor. An orthotopic HCC mouse model was established to assess the effect of a DC vaccine in combination with a PD-1 inhibitor on overall survival and tumor volume. RESULTS: Compared with the untreated control, single treatment with a DC vaccine or PD-1 inhibitor prolonged the overall survival and reduced the tumor volume of HCC mice. Further, compared with the single treatment with the DC vaccine or the PD-1 inhibitor, a combination treatment using both agents elicited a higher cytotoxicity of T cells against HCC cells and resulted in a better overall survival, smaller tumor volume, and greater tumor cell apoptosis in HCC mice. CONCLUSIONS: Our results suggest that a combination treatment with DC vaccine and PD-1 inhibitor may be a promising therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Vacinas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Células Dendríticas/imunologia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Receptor de Morte Celular Programada 1 , Vacinas/uso terapêutico
4.
Ther Adv Med Oncol ; 12: 1758835920922034, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565925

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is among the most common and lethal human cancers worldwide. Despite remarkable advances in treatment, high mortality in HCC patients remains a big challenge. To develop novel therapeutic strategies for HCC is thus urgently needed to improve patient survival. Dendritic cells (DC)-based vaccines can induce tumor-specific immunity and have emerged as a promising approach for treating HCC patients; however, its effectiveness needs to be improved. Recently, blockade of programmed death ligand 1 (PD-L1) immune checkpoint pathway has been shown to enhance anti-tumor immune responses and exhibited great potential in HCC therapy. METHODS: In this study, we generated DC vaccine by pulsing the C57BL/6J mouse bone marrow-derived DC with mouse hepatoma Hep-55.1C cell lysate. We developed a therapeutic strategy combining DC vaccine and PD-L1 inhibitor for HCC and evaluated its efficacy in an orthotopic HCC mouse model in which Hep-55.1C cells were directly injected into left liver lobe of C57BL/6J mouse. RESULTS: Compared with a control group of mice, groups of mice treated with DC vaccine or PD-L1 inhibitor had significantly improved overall survival, reduced tumor volume, and increased tumor cell apoptosis. Remarkably, combination treatment with DC vaccine and PD-L1 inhibitor led to considerably longer overall survival, smaller tumor volume, and higher tumor cell apoptosis of mice than either treatment alone in a dose-dependent manner through inducing a stronger anti-tumor cytotoxic T cell response. CONCLUSION: Our data suggested that combination therapy with DC vaccine and PD-L1 inhibitor might have great promise as a novel treatment strategy for HCC.

5.
Cancers (Basel) ; 12(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098177

RESUMO

In this study, for the first time, we precisely assembled the poly-γ-benzyl-l-glutamate and an amphiphilic copolymer d-α-tocopherol polyethylene glycol succinate into a mixed micellar system for the embedment of the anticancer drug doxorubicin. Importantly, the intracellular drug-releasing behaviors could be controlled by changing the secondary structures of poly-γ-benzyl-l-glutamate via the precise regulation of the buffer's pH value. Under neutral conditions, the micellar architectures were stabilized by both α-helix secondary structures and the microcrystalline structures. Under acidic conditions (pH 4.0), the interior structures transformed into a coil state with a disordered alignment, inducing the release of the loaded drug. A remarkable cytotoxicity of the Dox-loaded mixed micelles was exhibited toward human lung cancer cells in vitro. The internalizing capability into the cancer cells, as well as the intracellular drug-releasing behaviors, were also identified and observed. The secondary structures containing Dox-loaded mixed micelles had an outstanding antitumor efficacy in human lung cancer A549 cells-bearing nude mice, while little toxicities occurred or interfered with the hepatic or renal functions after the treatments. Thus, these pH-tunable α-helix-containing mixed micelles are innovative and promising for controlled intracellular anticancer drug delivery.

6.
Int J Mol Sci ; 19(11)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453614

RESUMO

Curcumin has been proven to be a potent agent in colon cancer treatment. However, its hydrophobicity and low oral bioavailability hampered its clinical application. These limitations could be improved through appropriate formulations such as using polyelectrolyte complexes (PECs). PECs were self-assembled with polycations and polyanions in polar solvents. In this study, a novel pectin-type B gelatin PEC was developed for use in curcumin formulation. At pH 4.0, natural polyanions pectin and polycations type B gelatin spontaneously formed PECs in ethanol/water solution, whereas under mimetic gastrointestinal tract (GI tract) conditions, at pH 2.0 and 8.0, pectin and type B gelatin were electrically neutralized, and the PECs swelled to allow payload release. After being transferred to pH 7.0 condition, as in the colon environment, PECs were internalized into colon carcinomas. Thus, pectin-type B gelatin PECs were successfully prepared, and their constituent ratio and drug-loading process were also optimized. The optimum particle size of the PECs was 264.0 ± 3.1 nm and they could swell as the zeta potential was altered at either pH 2.0 or 8.0. The optimum drug content and loading efficiency were 40% and 53%, respectively. At pH 2.0, curcumin was rapidly released from curcumin-loaded PECs, whereas at pH 8.0, curcumin-loaded PECs showed a sustained-release of curcumin. The bare PECs showed very low toxicity toward human normal cells, whereas curcumin-loaded PECs, after incubation at pH 2.0 for 2 h and at pH 8.0 for 4 h, induced cell cycle arrest and exhibited cytotoxic effect to HCT116 human colon cancer cells, even though these loaded PECs were pretreated with mimetic GI tract conditions. Our pectin-type B gelatin PECs were shown to be a promising oral formulation for curcumin delivery in anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Gelatina/química , Pectinas/química , Polieletrólitos/química , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...